Local connectedness, cardinal invariants, and images of H^*

Ahmad Farhat (joint work with J. Nikiel)

Uniwersytet Wrocławski Instytut Matematyczny

January 30, 2012

Ahmad Farhat (joint work with J. Nikiel) Local connectedness, cardinal invariants, and images of H*

Outline

2 Preliminary results

3 Techniques

One way of looking at things

\mathbb{H}^* , the Stone-Cech remainder of $[0,\infty)$

Notation:

- continuum = compact connected Hausdorff space.
- $\mathbb{H} = [0, \infty)$, $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

Prologue

 A compact space X is a remainder of III iff it is a continuous image of III*.

\mathbb{H}^* , the Stone-Cech remainder of $[0,\infty)$

Notation:

- continuum = compact connected Hausdorff space.
- $\mathbb{H} = [0, \infty)$, $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

Prologue

- A compact space X is a remainder of 𝔄 iff it is a continuous image of 𝔄^{*}.
- Any metric continuum is an image of \mathbb{H}^* .

\mathbb{H}^* , the Stone-Cech remainder of $[0,\infty)$

Notation:

- continuum = compact connected Hausdorff space.
- $\mathbb{H} = [0, \infty)$, $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

Prologue

- A compact space X is a remainder of 𝔄 iff it is a continuous image of 𝔄^{*}.
- Any metric continuum is an image of 𝒵*.
- Alan Dow and KP Hart proved that every continuum of weight \aleph_1 is a continuous image of $\mathbb{H}^*!$

\mathbb{H}^* , the Stone-Cech remainder of $[0,\infty)$

Notation:

- continuum = compact connected Hausdorff space.
- $\mathbb{H} = [0, \infty)$, $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

Prologue

- A compact space X is a remainder of 𝔄 iff it is a continuous image of 𝔄^{*}.
- Any metric continuum is an image of \mathbb{H}^* .
- Alan Dow and KP Hart proved that every continuum of weight \aleph_1 is a continuous image of \mathbb{H}^* !

 \mathbb{H}^* is not locally connected (it is an indecomposable continuum).

\mathbb{H}^* , the Stone-Cech remainder of $[0,\infty)$

Notation:

- continuum = compact connected Hausdorff space.
- $\mathbb{H} = [0, \infty)$, $\mathbb{H}^* = \beta \mathbb{H} \setminus \mathbb{H}$.

Prologue

- A compact space X is a remainder of 𝔄 iff it is a continuous image of 𝔄^{*}.
- Any metric continuum is an image of \mathbb{H}^* .
- Alan Dow and KP Hart proved that every continuum of weight \aleph_1 is a continuous image of $\mathbb{H}^*!$

 \mathbb{H}^* is not locally connected (it is an indecomposable continuum).

Local connectedness

- What we are interested in is the following: Let X be a continuous image of H^{*}. Then there is a compactification Y of H with remainder X. Suppose that X satisfies a certain cardinal characteristic p. Then, when is it possible to embed Y in a locally connected continuum which satisfies p? That is, we want to study the (possible) preservation of cardinal invariants on X in local connectifications of Y.
- We will be mainly interested in "connected" versions of cardinal invariants.

Local connectedness

- What we are interested in is the following: Let X be a continuous image of H^{*}. Then there is a compactification Y of H with remainder X. Suppose that X satisfies a certain cardinal characteristic p. Then, when is it possible to embed Y in a locally connected continuum which satisfies p? That is, we want to study the (possible) preservation of cardinal invariants on X in local connectifications of Y.
- We will be mainly interested in "connected" versions of cardinal invariants.

Cardinal invariants

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

Cardinal invariants

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

By analogy with the Suslin number, a connected version can be defined, the *Suslinian number* of a continuum X.

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

By analogy with the Suslin number, a connected version can be defined, the *Suslinian number* of a continuum X.

c(X) = sup{|C| : C is a disjoint family of nondegenerate subcontinua of X}.

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

By analogy with the Suslin number, a connected version can be defined, the *Suslinian number* of a continuum X.

c(X) = sup{|C| : C is a disjoint family of nondegenerate subcontinua of X}.

A continuum X with countable Suslinian number is called Suslinian.

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

By analogy with the Suslin number, a connected version can be defined, the *Suslinian number* of a continuum X.

c(X) = sup{|C| : C is a disjoint family of nondegenerate subcontinua of X}.

A continuum X with countable Suslinian number is called Suslinian. We may also define, e.g., the connected analogue of density:

 d(X) = min{|D| : D is a subset of X meeting each nondegenerate subcontinuum of X}.

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

By analogy with the Suslin number, a connected version can be defined, the *Suslinian number* of a continuum X.

c(X) = sup{|C| : C is a disjoint family of nondegenerate subcontinua of X}.

A continuum X with countable Suslinian number is called Suslinian. We may also define, e.g., the connected analogue of density:

d(X) = min{|D|: D is a subset of X meeting each nondegenerate subcontinuum of X}.

These cardinal characteristics were studied by {Banakh, Tuncali} \subset {Banakh, Fedorchuk, Nikiel, Tuncali}.

Recall the definition of the Suslin number (or cellularity) of a space X.

• $c(X) = \sup\{|\mathcal{U}| : \mathcal{U} \text{ is a disjoint family of non-empty open subsets of } X\}.$

By analogy with the Suslin number, a connected version can be defined, the *Suslinian number* of a continuum X.

c(X) = sup{|C| : C is a disjoint family of nondegenerate subcontinua of X}.

A continuum X with countable Suslinian number is called Suslinian. We may also define, e.g., the connected analogue of density:

d(X) = min{|D|: D is a subset of X meeting each nondegenerate subcontinuum of X}.

These cardinal characteristics were studied by {Banakh, Tuncali} \subset {Banakh, Fedorchuk, Nikiel, Tuncali}.

Outline

One way of looking at things

To motivate our results, we start from folklore, sketching the proof of the following fact.

Fact

Each metrizable continuum X can be embedded in a locally connected continuum Y with $\overline{c}(Y) = \overline{c}(X)$.

To motivate our results, we start from folklore, sketching the proof of the following fact.

Fact

Each metrizable continuum X can be embedded in a locally connected continuum Y with $\overline{c}(Y) = \overline{c}(X)$.

Sketch of proof. X is a compact metric space, hence \exists continuous map $f: C \to X$ from the Cantor set onto X. Assume $\{0,1\} \subset C \subset [0,1]$. Let \mathcal{G} be the decomposition of [0,1] into fibers of f, $\{f^{-1}(x) : x \in X\}$, and singletons.

The quotient space, $Y = [0,1]/\mathcal{G}$ is a metrizable locally connected continuum containing a homeomorphic copy of X.

 $Y \setminus X$ is a union of countably many pairwise disjoint open arc, and obviously $\overline{c}(Y) = \overline{c}(X)$.

To motivate our results, we start from folklore, sketching the proof of the following fact.

Fact

Each metrizable continuum X can be embedded in a locally connected continuum Y with $\overline{c}(Y) = \overline{c}(X)$.

Sketch of proof. X is a compact metric space, hence \exists continuous map $f: C \to X$ from the Cantor set onto X. Assume $\{0,1\} \subset C \subset [0,1]$. Let \mathcal{G} be the decomposition of [0,1] into fibers of f, $\{f^{-1}(x): x \in X\}$, and singletons.

The quotient space, $Y = [0,1]/\mathcal{G}$ is a metrizable locally connected continuum containing a homeomorphic copy of X.

 $Y \setminus X$ is a union of countably many pairwise disjoint open arc, and obviously $\overline{c}(Y) = \overline{c}(X)$.

Suppose no κ^+ -Souslin tree exists. Then for every continuum X which is an image of \mathbb{H}^* and which has $\overline{c}(X) = \kappa$, we can embed any compactification of \mathbb{H} with X as remainder in a locally connected continuum Y with $\overline{c}(Y) = \kappa$.

Corollary

Under the Souslin hypothesis, for each Suslinian continuum X we can embed any compactification of \mathbb{H} with X as remainder in a locally connected Suslinian continuum.

Suppose no κ^+ -Souslin tree exists. Then for every continuum X which is an image of \mathbb{H}^* and which has $\overline{c}(X) = \kappa$, we can embed any compactification of \mathbb{H} with X as remainder in a locally connected continuum Y with $\overline{c}(Y) = \kappa$.

Corollary

Under the Souslin hypothesis, for each Suslinian continuum X we can embed any compactification of \mathbb{H} with X as remainder in a locally connected Suslinian continuum.

Actually under SH, each Suslinian continuum is metrizable, so this observation is trivial. It is in contrast to the following:

Suppose no κ^+ -Souslin tree exists. Then for every continuum X which is an image of \mathbb{H}^* and which has $\overline{c}(X) = \kappa$, we can embed any compactification of \mathbb{H} with X as remainder in a locally connected continuum Y with $\overline{c}(Y) = \kappa$.

Corollary

Under the Souslin hypothesis, for each Suslinian continuum X we can embed any compactification of \mathbb{H} with X as remainder in a locally connected Suslinian continuum.

Actually under SH, each Suslinian continuum is metrizable, so this observation is trivial. It is in contrast to the following:

Under the negation of the Souslin hypothesis, there is a Suslinian continuum X (namely a compact, connected Suslin line), such that no compactification of \mathbb{H} with X as remainder can be embedded in a locally connected Suslinian continuum.

Outline

2 Preliminary results

One way of looking at things

Non-metric compacta as inverse limits

Theorem [Mardesic]

A non-metric compactum X is homeomorphic to the inverse limit of a well-ordered inverse system $(X_{\alpha}, f_{\alpha}^{\beta}, \kappa)$, where each factor space X_{α} is compact with $w(X_{\alpha}) < w(X)$, each bonding map f_{α}^{β} is surjective, and $\kappa \leq w(X)$. If, moreover, X is locally connected, we may choose the inverse system to be such that each bonding mapping is also monotone.

Of course, if X is locally connected, then each factor space X_{α} is locally connected.

Non-metric compacta as inverse limits

Theorem [Mardesic]

A non-metric compactum X is homeomorphic to the inverse limit of a well-ordered inverse system $(X_{\alpha}, f_{\alpha}^{\beta}, \kappa)$, where each factor space X_{α} is compact with $w(X_{\alpha}) < w(X)$, each bonding map f_{α}^{β} is surjective, and $\kappa \leq w(X)$. If, moreover, X is locally connected, we may choose the inverse system to be such that each bonding mapping is also monotone.

Of course, if X is locally connected, then each factor space X_{α} is locally connected.

Scepin spectral theorem

We will make use of the spectral theorem of Scepin in our analysis of non-metric continua.

Theorem [Scepin]

Let $\{X_{\alpha}, p_{\alpha}^{\beta}, \kappa\}$ and $\{Y_{\alpha}, q_{\alpha}^{\beta}, \kappa\}$ be two continuous well-ordered inverse systems, where

- () κ is an uncountable regular cardinal, and
- $w(X_{\alpha}) < \kappa \text{ for every } \alpha < \kappa,$

and denote by X and Y the respective inverse limits. Then for any map $f: X \to Y$, there exists a clubset $C \subseteq \kappa$ and maps $f_{\alpha}: X_{\alpha} \to Y_{\alpha}, \ \alpha \in C$, such that $f = \varprojlim \{f_{\alpha}, \alpha \in C\}$. If f were a homeomorphism, then each f_{α} would also be a homeomorphism.

Scepin spectral theorem

We will make use of the spectral theorem of Scepin in our analysis of non-metric continua.

Theorem [Scepin]

Let $\{X_{\alpha}, p_{\alpha}^{\beta}, \kappa\}$ and $\{Y_{\alpha}, q_{\alpha}^{\beta}, \kappa\}$ be two continuous well-ordered inverse systems, where

 ${f 0}~\kappa$ is an uncountable regular cardinal, and

$$w(X_{\alpha}) < \kappa \text{ for every } \alpha < \kappa,$$

and denote by X and Y the respective inverse limits. Then for any map $f: X \to Y$, there exists a clubset $C \subseteq \kappa$ and maps $f_{\alpha}: X_{\alpha} \to Y_{\alpha}, \ \alpha \in C$, such that $f = \varprojlim \{f_{\alpha}, \alpha \in C\}$. If f were a homeomorphism, then each f_{α} would also be a homeomorphism.

Continuity is meant to be at each limit ordinal less than κ .

Scepin spectral theorem

We will make use of the spectral theorem of Scepin in our analysis of non-metric continua.

Theorem [Scepin]

Let $\{X_{\alpha}, p_{\alpha}^{\beta}, \kappa\}$ and $\{Y_{\alpha}, q_{\alpha}^{\beta}, \kappa\}$ be two continuous well-ordered inverse systems, where

 ${f 0}~\kappa$ is an uncountable regular cardinal, and

$$w(X_{\alpha}) < \kappa \text{ for every } \alpha < \kappa,$$

and denote by X and Y the respective inverse limits. Then for any map $f: X \to Y$, there exists a clubset $C \subseteq \kappa$ and maps $f_{\alpha}: X_{\alpha} \to Y_{\alpha}, \ \alpha \in C$, such that $f = \varprojlim \{f_{\alpha}, \alpha \in C\}$. If f were a homeomorphism, then each f_{α} would also be a homeomorphism.

Continuity is meant to be at each limit ordinal less than κ .

Outline

2 Preliminary results

I will sketch one way of obtaining a Souslin line from a Souslin tree. This will clarify the use of inverse limit techniques.

Let T be a Souslin tree. We may assume that T satisfies the following additional properties:

- $\forall t \in T, succ(t)$ is uncountable,
- (a) the level T_0 is infinite, and $\forall t \in T$, *immsucc*(t) is infinite,
- Solution when s ≠ t belong to a limit level T_α, α ≠ 0, then pred(s) ≠ pred(t).

I will sketch one way of obtaining a Souslin line from a Souslin tree. This will clarify the use of inverse limit techniques.

Let T be a Souslin tree. We may assume that T satisfies the following additional properties:

- $\forall t \in T, succ(t)$ is uncountable,
- **2** the level T_0 is infinite, and $\forall t \in T$, *immsucc*(t) is infinite,
- Solution when s ≠ t belong to a limit level T_α, α ≠ 0, then pred(s) ≠ pred(t).